
 

9. HETEROGENEITY 
9.1. Overview 
 
9.1.1. What do we mean by heterogeneity? 
 
The term “heterogeneity” refers to the dispersion of true effects across studies.  
Typically, the studies in a meta-analysis will differ from each other in various 
ways.  Each study is based on a unique population, and the impact of any 
intervention will typically be larger in some populations and smaller in others.  
The specifics of the intervention may vary from study to study, the scale used 
to assess outcome may vary from study to study, and so on.  Each of these 
factors may have an impact on the effect size.  One goal of the analysis will 
be to determine how much the effect size varies across studies, and this is 
variation is called heterogeneity (Ades, Lu, & Higgins, 2005; P. Glasziou & 
Sanders, 2002; J. Higgins, Thompson, Deeks, & Altman, 2002; J. P. Higgins 
et al., 2009; Keefe & Strom, 2009; Thompson, 1994).   
 
9.1.2. Heterogeneity in a primary study 
 
The basic idea of heterogeneity in a meta-analysis is similar to that in a 
primary study.  Consider a primary study to assess the distribution of math 
scores in a high-school class.  Suppose that the mean score across all students 
in the class is 50.  To understand how the students are performing we also 
need to ask about heterogeneity, and we typically do so by reporting the 
standard deviation of scores.  We understand that 95% of all students will 
score within two standard deviations of the mean.  Therefore – 

 
A. If the standard deviation is 5 points, most students will score between 

40 and 60.   
B. If the standard deviation is 10 points, most students will score 

between 30 and 70.   
C. If the standard deviation is 20 points, most students will score 

between 10 and 90. 
  

75 



76 MISTAKES RELATED TO HETEROGENEITY  

These intervals are called prediction intervals.  If someone asked us to 
predict the score for a student in the class (selected at random from the class), 
in case A we would predict the student would score in the range of 40 to 60, 
and we would be correct some 95% of the time.  The same idea applies to 
cases B and C.  

When we perform a primary study, we compute several other statistics 
related to heterogeneity, such as the sum of squares and the variance.  These 
are all important statistics, but if we want to know how much the scores vary, 
these statistics are tangential, at best.  The only statistics that directly address 
this question are the standard deviation and prediction interval.  
 
9.1.3. Heterogeneity in a meta-analysis 
 
The same ideas apply when we turn to meta-analysis.  For example, consider 
the following. 

Castells et al. (2011)  conducted a meta-analysis of seventeen studies to 
assess the impact of methylphenidate in adults with Attention Deficit 
Hyperactivity Disorder (ADHD).  Patients with this disorder have trouble 
performing cognitive tasks, and it was hypothesized that the drug would 
improve their cognitive function.  Patients were randomized to receive either 
the drug or a placebo, and then tested on measures of cognitive function.  The 
effect size was the standardized mean difference between groups on the 
measure of cognitive function.   

 
In this context – 

 
• A standardized mean difference of 0.20 would represent a trivial effect 

size.  While this difference would be captured by the test, it is so small 
that the patient might not be aware of any change.   

• A standardized mean difference of 0.50 would represent a moderate effect 
size.  The patient would be aware of a clinically important change, and 
some co-workers might notice the change as well.   

• A standardized mean difference of 0.80 would represent a large effect 
size.  The patient would be pleasantly surprised by the improvement, and 
some co-workers would be likely to remark that something was different. 
 
It turns out that the mean effect size is 0.50.  On average, across all 

comparable populations, the drug increases cognitive functioning by one-half 
a standard deviation.  But to understand the potential utility of the drug we 
also need to ask about heterogeneity.   
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Figure 21 | Effect size varies from 0.40 to 0.60 

 

 
Figure 22 | Effect size varies from 0.30 to 0.70 

 

 
Figure 23 | Effect size varies from 0.10 to 0.90 
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Consider three possible results for the meta-analysis, listed here as A, B, 
and C.  In all cases the mean impact is 0.50, but the consistency of the impact 
varies. 

 
A. The impact is as low as 0.40 in some populations, and as high as 0.60 in 

others (Figure 21). 
B. The impact is as low as 0.30 in some populations, and as high as 0.70 in 

others (Figure 22). 
C. The impact is as low as 0.10 in some populations, and as high as 0.90 in 

others (Figure 23). 
 
We might make the following decisions about the utility of the drug in 

the three cases. 
 

A. We can expect to see pretty much the same effect in all populations. 

B. The impact will vary somewhat across populations, but from a clinical 
perspective we can still talk about a common effect size. 

C. The impact varies substantially across populations.  It would be important 
to establish where the impact is trivial, moderate, and high, so that we can 
target this intervention more effectively.  However, since the impact is 
always positive, we could use this intervention immediately. 

These judgments are subjective.  For example, we can discuss whether to 
recommend the intervention in case C, where the effect will be trivial in some 
populations.  What is clear though, is that when we discuss the potential utility 
of the drug, it should be based on this type of information. 
 
9.1.4. The sources of confusion 
 
While basic idea of heterogeneity is the same in a meta-analysis and a primary 
study, there are a few technical details that differ between the two. 

In a primary study (when we have one score for each subject) we 
typically treat the observed score for each subject as being the same as the 
true score for that subject.  If a student scores 40 on the test, we treat 40 as 
being that student’s true score.  We compute the variance, standard deviation 
and prediction interval for the observed scores, and these serve also as the 
values for the true scores as well. 

By contrast, in the case of a meta-analysis we make a distinction between 
the observed effect size and the true effect size for each study.  The observed 
effect size is the effect size that we see in the sample.  The true effect size is 



     Heterogeneity − Overview 79 

the effect size that we would see if we could somehow enroll the entire 
population in the study.  The observed effect size serves as an estimate of the 
true effect size but invariably falls below or above the true effect size due to 
sampling error. 

The variance of observed effects tends to be larger than the variance of 
true effects.  To understand why, consider what would happen if we ran five 
studies based on the same population, and computed the effect size in each.  
The true effect size is the same in all five studies (all studies are estimating 
the effect size in the same population) and so the variance of true effects is 
zero.  Yet, the observed effects will differ from each other because of 
sampling error, and so the variance of the observed effects will be greater than 
zero.  While this is most intuitive in the case when the variance of true effects 
is zero, it applies also when the true effects vary.  The variance of observed 
effects tends to exceed the variance of true effects.   

The ADHD analysis serves as a case in point.  Figure 24 shows two plots.  
The inner plot shows the dispersion of true effects, while the outer plot shows 
the dispersion of observed effects.  We see the outer plot, but we care about 
the inner plot since the inner plot tells us how much the effect size really varies 
across populations. 

 

 
Figure 24 | Dispersion of observed effects (outer) and true effects (inner) 

 
The heterogeneity statistics typically reported for a meta-analysis 

include the Q-value, a p-value, I-squared (I2), Tau-squared (T2), and Tau (T).  
The definition of each, and the relationships among them are presented in 
Appendix VI.  The point I need to make here is that many of the statistics that 
are typically reported are tangential to the one issue we really care about, 
which is How much does the effect size vary.  We need to be clear about what 



80 MISTAKES RELATED TO HETEROGENEITY  

each statistic means, and then focus on the ones that are relevant to this 
question. 
 
On the pages that follow, I address various issues including the following  

 
• Researchers sometimes assume that heterogeneity diminishes the utility 

of the analysis.  The reality is more complicated. 
• The one statistic that offers an unambiguous report of the dispersion is 

the prediction interval.  Researchers rarely report this interval, and 
sometimes confuse it with the confidence interval. 

• Researchers often treat the I2 statistic as being synonymous with 
heterogeneity.  In some cases, the I2 statistic is used to classify 
heterogeneity as being low, moderate, or high.  In fact, the I2 statistic does 
not tell us how much the effect size varies, and the idea of classifying 
heterogeneity into these categories without additional context is 
meaningless. 

• Researchers sometimes use the Q statistic or the p-value for a test of 
heterogeneity as indices of heterogeneity.  This is a mistake. 

 



     Heterogeneity is bad 81 

9.2. Heterogeneity is bad 
 
9.2.1. Mistake 

Heterogeneity refers to the fact that the true effect size varies across studies.  
Some researchers believe that heterogeneity diminishes the utility of the 
analysis.  In an extreme version of this idea, some have asserted that when the 
effect sizes are heterogeneous, it is a bad idea to perform a meta-analysis at 
all.  The truth is more complicated.   
 
9.2.2. Details 

Heterogeneity is not inherently good or bad, but it does affect what we can 
learn from the analysis.  If our goal in the analysis is to report that the 
intervention increases scores by a certain value, then heterogeneity is indeed 
a problem.  In the absence of heterogeneity, we can report a common effect 
size that applies to all populations.  In the presence of heterogeneity, there is 
no common effect size and so we cannot meet this goal. 
 However, in the presence of heterogeneity we can assess the extent of 
heterogeneity and report, for example, that the effect size is as low as 0.05 in 
some populations and as high as 0.95 in others.  If this is the true state of 
affairs, then this should be the goal of the analysis.  
 
9.2.3. Heterogeneity affects what we can learn from the analysis  
 
If the between-study heterogeneity is trivial, then the meta-analysis may 
provide definitive information about the utility of the intervention for all 
comparable populations.  

For example, Cannon et al. (2006)  conducted a meta-analysis of studies 
that compared a high-dose of statins vs. a standard dose for prevention of 
cardiovascular events (Figure 25).  The mean risk ratio was 0.849 (patients 
assigned to a high dose were 15% less likely to have an event), and this effect 
size was essentially the same for all studies.  On this basis, the mean effect 
size is a useful indicator of the effect size for all comparable populations. 
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Figure 25 | High dose vs. standard dose of statins | Risk ratio < 1 favors high dose 

 
By contrast, if the between-study heterogeneity is substantial, the meta-

analysis will not be able to provide definitive information about the utility of 
the intervention in any given population, but it may be able to provide 
important information about the variation in effect size.   

For example, Castells et al. (2011) conducted a meta-analysis of studies 
that assessed the impact of methylphenidate vs. placebo on the cognitive 
functioning of adults with attention deficit hyperactivity disorder (ADHD).  
The mean effect size was a standardized mean difference of roughly 0.50, but 
the effect size varied substantially across studies (Figure 28).  As indicated by 
line [C], there were some populations where the effect size was 0.05 (which 
would represent a trivial effect in this context), some where it was near 0.50 
(a moderate effect) and some where it was 0.95 (a very large clinical effect).  
In this case, the mean is not a useful indicator of the effect size we can expect 
to see in any given population, since the effect size in most populations falls 
some distance from the mean.  Rather, the take-home message from this 
analysis might be that the treatment effect varies substantially.  Therefore, we 
need to identify factors associated with this variation. 

In this context, it would be important to clarify two related issues. 
First, the suggestion that we can speak of heterogeneity as being present 

or absent is a misnomer, since it implies that some sets of studies are 
heterogeneous while others are not.  In a systematic review based on studies 
that are pulled from the literature, especially when the studies assess the 
impact of an intervention, the true effect size will almost always be larger in 
some cases than in others.  So, when we ask about the impact of heterogeneity, 
we are not asking about zero heterogeneity vs. some heterogeneity.  Rather, 
we are asking about trivial heterogeneity vs. substantive heterogeneity.  
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Figure 26 | Methylphenidate for adults with ADHD | Effect size > 0 favors treatment 

 
Second, I said that when heterogeneity is trivial, the mean effect size 

provides definitive information about all comparable studies.  This statement 
comes with some important caveats.    

 
A. This refers to the true heterogeneity, not the estimated heterogeneity.  The 

fact that heterogeneity is estimated as being trivial (or zero) does not 
necessarily mean that the true heterogeneity is trivial. 

B. The description of heterogeneity as being trivial or substantive refers to 
the practical impact of the intervention rather than some statistical index.  
The researcher (or reader) would need to decide what amount of 
dispersion is of practical importance.   

C. The statement that the mean effect size applies to all comparable studies 
is more useful in theory than in practice.  In practice, it may not be clear 
what studies are comparable to those in the analysis. 
  

9.2.4. The good folks of New Cuyama 
 
At a conference in London to mark the 30th anniversary of the paper by 
DerSimonian and Laird which introduced their method for estimating 
heterogeneity, Dr. Laird was asked what she considered to be “too much” 
heterogeneity.  She responded by showing the photo in Figure 27. 
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The good folks in the town of New Cuyama erected a sign that captured 
some key statistics.  The population is 562, the town is 2150 feet above sea 
level, and the town was established in the year 1951.  They summed these 
statistics and report the total is 4663. 

 

 
 

Figure 27 | An example of “Too much heterogeneity” 
 

Dr. Laird said that this would be an example where people had gone too 
far.  But in most cases, heterogeneity is not a problem if we treat it 
appropriately. 
 

Summary 

The suggestion that we should not perform a meta-analysis in the presence 
of heterogeneity is based on the false premise that the goal of an analysis 
is always to estimate the mean effect size. In fact, the goal of an analysis 
is to estimate the pattern of effects.  If the effect size is reasonably 
consistent across studies, we can report that the effect size is consistent 
and then focus on the mean.  If the effect size varies across studies, we 
can discuss the extent of variation and what this says about the utility of 
the intervention.  We might also try to explain some of the variation.  
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9.3. The prediction interval 
 
9.3.1. Mistake 

The prediction interval addresses the question we intend to ask when we ask 
about heterogeneity.  It tells us how the true effect size varies across 
populations, and it does so on a scale that allows us to address the utility of 
the intervention.  The mistake that researchers make is that they neglect to 
report this interval.  
 
9.3.2. Details 

The following examples show how the prediction interval addresses the issue 
of heterogeneity in a concise and intuitive format. 
 
9.3.3. Example | Effect of methylphenidate on cognitive function in 
adults with ADHD 
 
Castells et al. (2011) looked at 17 studies that evaluated the effect of 
methylphenidate on cognitive function in adults with ADHD (Figure 28).  The 
effect size is the standardized mean difference (d).  For purposes of this 
discussion I will assume that an effect size of 0.20 is small (it would show up 
on a test but the patient might not notice the change), an effect size of 0.50 is 
moderate (the patient would recognize that something was different), and that 
an effect size of 0.80 is large (colleagues would recognize the change). 

The mean effect size is roughly 0.50 with a confidence interval [B] of 
0.35 to 0.65. The confidence interval is an index of precision, and tells us how 
precisely we have estimated the mean effect size.  Here, the entire confidence 
interval falls within the “moderate” range (as defined above), so we can report 
that the mean effect size is moderate. 

The prediction interval [C] is roughly 0.05 to 0.95.  The prediction 
interval is an index of dispersion, and tells us how widely the true effect size 
varies.  Here, we would expect that in some 95% of all populations, the true 
effect size will fall in the range of 0.05 to 0.95.  Using the categories outlined 
above, the effect size would fall between trivial and moderate in half the cases, 
and between moderate and large in the other half.  Of note, there are no 
populations where the impact would be harmful.  (Note that the terms 
moderate and large here refer to the clinical impact of the treatment and not 
to the extent of dispersion.) 
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Figure 28 | Methylphenidate for adults with ADHD | Effect size > 0 favors treatment 

 
The prediction interval allows us to address the questions that we 

typically have in mind when we ask about heterogeneity (Borenstein, Higgins, 
Hedges, & Rothstein, 2017; IntHout, Ioannidis, Rovers, & Goeman, 2016). 
To wit − 

 
• Researchers typically report statistics such as Q, I2, and T2, but none of 

these tells us how much the effect size varies.  Here, Q is 30.106 with 16 
degrees of freedom, I2 is 47%, and T2 is 0.039.  Based on this information, 
few readers would have any sense of the dispersion in effects. 

• By contrast, the prediction interval reports the extent of the dispersion in 
the same units as the effect size.  The effect size varies over roughly 90 
points (in d units) and we understand what that means.  

• Additionally, the prediction interval reports the dispersion using absolute 
values. It tells us not only that the effects vary over roughly 90 points, but 
also that the specific range of values is 0.05 to 0.95 (rather than −0.45 to 
+0.45, for example).  The treatment is very helpful in some cases and 
minimally helpful in others, but there are no populations within the 
prediction interval where the treatment is likely to be harmful. 
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Based on this interval we might decide that − 
 

• In the absence of further information, it would be reasonable to use the 
drug for all comparable populations. 

• We should pursue additional research to identify the factors that are 
related to the impact of the drug.  If it turns out that the drug is more 
effective in some populations than others, we would want to target those 
populations.  If it turns out that the drug is more effective in certain doses 
than in others, we might be able to use the drug more effectively.  
  
These types of decisions are subjective, but it should be clear that a 

meaningful discussion about the potential utility of the treatment would be 
based on the information contained in the prediction interval.  By contrast, if 
we had simply reported Q, T2 or I2, the extent of dispersion would not be 
known, and it would not be possible to have this discussion (see section 9.5). 
 
9.3.4. Example | Impact of GLP-1 mimetics on blood pressure 
 
Katout et al. (2014)  looked at the impact of GLP-1 mimetics on diastolic 
blood pressure (Figure 29).  The numbers that follow are based on our re-
analysis of the data, and differ slightly from the original report due to 
rounding error. 

The effect size index is the raw difference in mean blood pressure, with 
values below zero indicating a beneficial effect.  The mean effect size is 
−0.473, with a confidence interval of −1.195 to +0.248 [B].  The confidence 
interval is an index of precision, and tells us how precisely we have estimated 
the mean effect size.  Here, the confidence interval includes zero, so we 
cannot reject the null hypothesis that the mean effect size is zero. 

The prediction interval [C] is roughly −4.08 to +3.13.  The prediction 
interval is an index of dispersion, and tells us how widely the true effect size 
varies.  When the effects vary this widely, the mean is largely irrelevant. This 
is especially true if the intervention is helpful in some cases and harmful in 
others. The take-home message here would be that we need to understand 
where the treatment is helpful, and where it is harmful.  

Critically, only the prediction interval allows us to address the questions 
that we typically have in mind when we ask about heterogeneity. That is − 
 
• The Q-value is 4084.467 with 26 degrees of freedom, I2 is 99.363%, and 

T2 is 2.933.  None of these gives us any sense of the actual dispersion. 
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• The prediction interval reports the extent of the dispersion in the same 
units as the effect size (mmHg), and we understand what a range of 7 
points means on this scale. 

• The prediction interval reports the dispersion using absolute values.  It 
tells us not only that the effects vary over roughly 7 mmHg, but line [C] 
shows that the treatment helpful (less than zero) in roughly 60% of 
populations and harmful (greater than zero) in the other 40%. 
 

 
Figure 29 | GLP-1 mimetics and diastolic BP | Mean difference < 0 favors treatment 
 

Based on this interval we might decide that this treatment is potentially 
useful in some cases, but we need to determine where it will be helpful and 
where it will be harmful.  For example, it may be helpful in specific types of 
patients, or in specific variants of the intervention.   

When we present the prediction interval, the actual extent of dispersion 
is clear, and we can discuss the clinical implications of this dispersion.  By 
contrast, if we had simply reported T2 or I2, the extent of dispersion would not 



     The prediction interval 89 

be known, and it would not be possible to have this discussion (see section 
9.5). 
 
9.3.5. When τ2 is estimated as zero 

The prediction interval speaks to the dispersion in effects, and for that reason 
only applies when the estimate of the variance (T2) is greater than zero.  When 
the estimate of T2 is zero, we generally would report the mean and confidence 
interval, but not the prediction interval.  
 
9.3.6. Example | High dose vs. standard dose of statins 
 
For example, Cannon et al. (2006) used a meta-analysis to synthesize data 
from four studies that compared the impact of a high dose vs. a standard dose 
of statins in preventing cardiovascular events (Figure 30).  The mean risk ratio 
of 0.849 tells us that the high dose was more effective than the standard dose 
in preventing the events.    
 

 
Figure 30 | High dose vs. standard dose of statins | Risk ratio < 1 favors high dose 

 
In this analysis, τ2, the variance of true effects, was estimated as zero.  

When τ2 is estimated as zero we can generally assume that this is an 
underestimate and the actual value of τ2 is positive.  Nevertheless, we assume 
that the true variance is trivial, and proceed accordingly.  Here we would 
report that the mean effect size in the universe of comparable populations falls 
in the interval 0.786 to 0.917, and that there is no evidence that the effect size 
varies across studies. 

As always, the confidence interval is an index of precision, not an index 
of dispersion.  The fact that the confidence interval is 0.786 to 0.917 does not 
tell us that the effect size varies from 0.786 in some populations to 0.917 in 
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others.  Rather, we assume that the true effect size is roughly the same in all 
populations.  This common effect size is assumed to fall somewhere in this 
range.  Since we assume that the effect size is roughly the same for all 
populations, we omit the prediction interval [C]. 
 
9.3.7. Computing prediction intervals 
 
I describe the prediction interval by reporting (for example) that the effect 
size ranges from 0.05 in some populations to 0.95 in others.  To be clear, this 
is not simply a report of the lowest and highest effects.  Rather, the basic 
approach to computing prediction intervals is to use the mean plus or minus 
two standard deviations, which is the same approach we would take in a 
primary study.  However, there are some technical issues that we need to 
address.  For all effect-size indices we need to expand the intervals to take 
account of the fact that the mean and standard deviation are estimated with 
error.  For some effect-size indices we need to transform the values into 
another metric before computing the intervals.   

In Appendix VII, I present the formulas for computing prediction 
intervals that address both issues.  As a practical matter, it is much simpler to 
use a spreadsheet for the computations.  This spreadsheet may be downloaded 
on the book’s web site.   This spreadsheet may be used as an adjunct to any 
computer program, since it requires the user to enter only four items (the 
number of studies, the mean effect size, the upper limit of the confidence 
interval, and T2).    

9.3.8. Some caveats regarding the prediction interval 
 
All the analyses we perform as part of a meta-analysis (or any analysis, for 
that matter) require that some assumptions be met.  If these assumptions are 
violated, the results may not be reliable.  In the case of prediction intervals, 
we need to keep the following in mind. 

The interval will be reasonably accurate if it is based on enough data.  
The minimum number of studies needed to compute a useful prediction 
interval would depend on the extent of heterogeneity, but would likely be at 
least ten in many cases (Hedges & Vevea, 1998).   It would be reasonable to 
have more faith in the accuracy of the interval as the number of studies 
increases. 

When computing the prediction interval, we typically assume that the 
effects are normally distributed.  However, in practice this will not always be 
the case.  For example, (Hackshaw, Law, & Wald, 1997)  looked at the 
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relationship between second-hand smoke and lung cancer.  On average, 
exposure to second-hand smoke is associated with an increased risk in lung 
cancer, but if we compute a prediction interval and assume that the 
distribution of true effects is normally distributed (in log units), we would 
conclude that in some small minority of cases exposure is associated with a 
decreased risk of lung cancer.  Here, it makes more sense to assume that the 
distribution is truncated at a risk ratio of 1.0. 

Importantly, the prediction interval applies to the universe from which 
the studies were drawn, and this may not be the same as the universe that we 
had in mind when we planned the systematic review (IntHout et al., 2016).  
Both the mean and the standard deviation of effects will depend on the 
specific mix of populations reflected in the included studies, and so will the 
prediction interval which is based on these statistics (see section 7.4). 

The spreadsheet cited above expands the interval to take account of the 
imprecision of the estimate, and make it more likely that the interval covers 
some 95% of all populations.  Since the goal of this approach is to ensure that 
most populations are included under the interval, it always errs on the side of 
expanding (rather than narrowing) the interval.  As such, it may exaggerate 
the true extent of the dispersion. 
 
9.3.9. The prediction interval is only a first step 
 
The prediction interval allows us to quantify the extent of dispersion, but is 
not intended to explain that dispersion.  When the prediction interval tells us 
that the impact of treatment varies substantially, we know that we need more 
information to use the intervention effectively.  In the ADHD analysis, we 
need to know where the drug’s impact is trivial and where it is substantial.  In 
the GLP-1 example, we need to know where the treatment is helpful and 
where it is harmful.  If we have enough studies in the meta-analysis, we might 
be able to use subgroup analysis or meta-regression to see which factors are 
associated with the effect size, and develop hypotheses to be tested in future 
research. 
 
9.3.10. The normal curve 
 
There is no convention for how to display the prediction interval on a plot.  In 
this book I generally superimpose a line under the forest plot.  For example, 
in Figure 28 the prediction interval for the ADHD analysis is displayed as a 
line [C] that extends from 0.05 to 0.95.   
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However, we also have the option of constructing a normal curve for the 
prediction interval, as in Figure 31, which is also based on the ADHD 
analysis.  In this figure line [C] denotes the part of the curve which captures 
the effect size in some 95% of all populations.  The sections of the plot to the 
left and right of line [C] correspond to the 5% of effects that fall outside the 
95% prediction interval.  Line [C] in Figure 31 is the same as line [C] in Figure 
28.  However, Figure 31 highlights the fact that most populations will have 
an effect size toward the center of the curve, with relatively few near the 
extremes.   

The web site includes an Excel spreadsheet that can be used to create this 
plot.  To use the plot, the user needs to enter only the mean effect size, the 
upper limit of the confidence interval, Tau-squared, and the number of 
studies.  Since all programs report these values, the spreadsheet can be used 
as an adjunct to any software for meta-analysis. 
 

 
Figure 31 | Distribution of true effects and prediction interval 

 
9.3.11. Reliability of the prediction interval 
 
As noted above, the prediction interval will not be reliable when based on a 
small number of studies.  To be clear, the problem of trying to estimate the 
prediction interval with too few studies applies also to the other indices, 
including T2, T, and I2.  So, if we are concerned that we do not have enough 
studies, switching to one of those indices is not a useful option.  Ironically, 
the poor precision for T2 and I2 has few practical problems because people do 
not actually use those values in any meaningful way.   By contrast, the 
prediction interval does present information in an intuitive format, and so 
reporting incorrect values for this interval can have real repercussions.  For 
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that reason, it might be best to only report the interval when we have enough 
studies to ensure that the estimate is reasonably precise.   
 

Summary 

When we ask about heterogeneity, what we have in mind is “What is the 
actual range of effects.”  The statistics typically reported for heterogeneity 
(such as I2) do not address this question. 

The one statistic that does provide this information is the prediction 
interval.  The prediction interval tells us the range of effects in the same 
metric that we use for the effect size, so that we understand the range of 
dispersion.  Critically, it tells us the range of effects on an absolute scale, 
so we know (for example) if the impact ranges from moderate to large, or 
from trivial to moderate, or from harmful to helpful. 

The accuracy of the prediction interval (and all other indices of 
heterogeneity) depends in part on the number of studies in the analysis.  
When the analysis includes at least ten studies, the prediction interval is 
likely to be accurate enough to be useful.  

A spreadsheet for computing the prediction interval is available on the 
book’s website. 
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9.4. Prediction interval vs. confidence interval 
 
9.4.1. Mistake 

The summary effect in a forest plot is typically displayed as a point estimate 
with a confidence interval.  Researchers sometimes assume that the 
confidence interval corresponds to the dispersion of effects.  In a variant of 
this mistake, the forest plot will be used to display one confidence interval for 
the fixed-effect model and a second (wider) confidence interval for the 
random-effects model.  Readers sometimes assume that the additional width 
of the random-effects confidence interval corresponds to the dispersion of 
effects.  In either case, this is a fundamental mistake.   
 
9.4.2. Details 

The confidence interval and the prediction interval are two entirely separate 
indices.  They address two entirely distinct issues. 

 
When we perform a meta-effects analysis, we typically have two distinct 

goals. 
   

• One goal is to estimate the mean effect size.  The confidence interval is 
an index of precision, and tells us how precisely we have estimated the 
mean.  A confidence interval of 40 to 60 tells us that the mean effect size 
in the universe of comparable populations falls somewhere in this range.  
(More accurately, in 95% of all meta-analyses the mean effect size will 
fall within the confidence interval).   

• A second goal is to estimate the dispersion of effects.  The prediction 
interval is an index of dispersion.  A prediction interval of 25 to 75 tells 
us that the true effect size will be as low as 25 in some populations, and 
as high as 75 on others. 
 

Figure 32 shows a fictional set of studies for a meta-analysis to assess the 
impact of tutoring.  In these studies, students are randomized to receive 
tutoring or to a control group, and we assess their scores on a math test.  The 
effect size is the raw difference in means between groups.  The mean 
difference is 50 points, which tells us that the tutoring increases the mean 
score by this amount. 
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Figure 32 | Confidence intervals and prediction intervals for a fictional meta-analysis 

 
At the bottom of the plot are two diamonds.  The first diamond shows the 

confidence interval for the fixed-effect model, while the second diamond 
shows the confidence interval for the random-effects model.  The first 
diamond has a width of 7.5 points while the second has a width of 20 points.  
Researchers sometimes assume that the span for the random-effects model 
tells us that the effects are dispersed over this (wider) range.  This is incorrect 
– both diamonds speak only to the precision of the estimate for the mean. 

   
• The confidence interval labeled “FE” is based on the standard error for 

the fixed-effect model or the fixed-effects model.  If all studies are 
sampled from the same population (fixed effect) or if we are reporting the 
mean for the studies in the analysis only and not for a wider universe of 
comparable studies (fixed effects), in 95% of all analyses this confidence 
interval will include the true effect size for the population(s) in question.  
This interval has a width of 7.5 points.  This is also labeled [A] in keeping 
with the conventions of this volume (see section 5). 

• The confidence interval labeled “RE” is based on the standard error for 
the random-effects model.  If the studies are sampled from different 
populations, and we are generalizing to the universe of comparable 
populations, in 95% of all analyses this confidence interval will include 
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the true mean effect size for the universe.  This interval has a width of 20 
points.  This is also labeled [B] in keeping with the conventions of this 
volume. 
 
The second diamond is wider than the first because it includes an 

additional source of sampling error.  Under the fixed-effect (singular) model 
the error comes from the fact that we are sampling people from a specific 
population.  Similarly, under the fixed-effects (plural) model the error comes 
from the fact that we are sampling people from a fixed set of populations.  By 
contrast, under the random-effects model the error comes from the fact that 
we are sampling people from populations, and additionally sampling 
populations from a universe of populations.  Critically, the additional width 
in the second diamond reflects additional error that comes from a second level 
of sampling.  It tells us nothing about how widely the effects are actually 
dispersed. 

Rather, to address the dispersion of effects we turn to the prediction 
interval, which is denoted as “PI”.  The prediction interval is 50 points wide.  
We expect that in some 95% of all relevant populations, the treatment will 
increase scores by at least 25 points to as much as 75 points.  This is also 
labeled [C] in keeping with the conventions of this volume. 

In this example I displayed the confidence intervals using a diamond 
rather than a horizontal line.  This is the format used by many computer 
programs (and included as an option in CMA).  However, when used for this 
purpose the diamond has precisely the same meaning as the simple line. 

For a fixed-effect or fixed-effects analysis we would display line [A] 
only.  For a random-effects analysis we would display lines [B] and [C] only.  
I display all three here for pedagogical reasons.   

Below, I present examples based on real data. 
 
9.4.3. Example | Prevalence of ADHD in patients with SUD 
 
van Emmerik-van Oortmerssen et al. (2012)  looked at prevalence of ADHD 
in patients with SUD (substance abuse disorder).  On the plot (Figure 33) − 
 
• The confidence interval for the fixed-effect model [A] tells us that the 

mean prevalence in this set of thirty studies falls in the range of 0.235 to 
0.257. 

• The confidence interval for the random-effects model [B] tells us that the 
mean prevalence in the universe of comparable populations falls in the 
range of 0.194 to 0.272. 
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• The prediction interval [C] tells us that the prevalence in any single 
population is as low as 0.082 in some, and as high as 0.500 in others. 

 
In this example, the random-effects confidence interval [B] spans eight points 
while the prediction interval [C] spans forty-two points.  Clearly, to conflate 
one with the other would be a serious mistake. 
 

 
Figure 33 | Prevalence of ADHD in patients with SUD 

 
9.4.4. Example | Augmenting clozapine with a second antipsychotic 
 
Taylor, Smith, Gee, and Nielsen (2012)   looked at the impact of augmenting 
clozapine with a second antipsychotic (Figure 34).  The effect size index is 
the standardized mean difference (d).   
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Figure 34 | Augmenting clozapine | Std mean difference < 0 favors augmentation 

 
• The confidence interval for the fixed-effect model extends 0.151 on either 

side of the mean [A].  This tells us that the mean effect in this specific set 
of fifteen studies falls in the range of −0.349 to −0.052.   

• The confidence interval for the random-effects model extends 0.213 on 
either side of the mean [B].  This tells us that the mean effect in the 
universe of comparable populations falls in the range of −0.452 to −0.026.   

• The prediction interval extends 0.590 on either side of the mean [C].  This 
tells us that the effect size in any one population will could be as low as 
−0.83 (improving function by 0.83 units) or as high as +0.35 (harming 
function by 0.35 units). 

We can say that the mean effect is “Helpful” on average since the 
confidence interval for the mean falls entirely to the left of zero.  However, in 
any single population the effect could be either helpful or harmful since the 
prediction interval includes values on both sides of zero.  What should be 
clear, is that the confidence interval and the prediction interval are addressing 
two entirely distinct issues, and to conflate one with the other would be a 
serious mistake. 
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9.4.5. Example | Impact of GLP-1 mimetics on blood pressure 
 
Katout et al. (2014)  looked at the impact of GLP-1 mimetics on diastolic 
blood pressure (Figure 35).  Mean differences less than zero indicate that the 
treatment was effective in lowering blood pressure.  The numbers that follow 
are based on our re-analysis of the data, and differ slightly from the original 
report, due to rounding error. 
 

 
Figure 35 | GLP-1 mimetics and diastolic BP | Mean difference < 0 favors treatment 

 
• Under the fixed-effect model the confidence interval extends roughly 

0.05 units on either side of the mean [A].  This tells us tells us that we can 
estimate the mean effect for the studies in the analysis within 0.05 units.  

• Under the random-effects model the confidence interval extends roughly 
0.72 units on either side of the mean [B].  This tells us that we can estimate 
the mean effect in universe of comparable studies within 0.72 units.   
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• The prediction interval extends 3.65 units on either side of the mean [C].  
This tells us that the effect size in any given population will usually fall 
with 3.65 units of the mean, in the range of −4.08 to +3.13. 

 
As always, it would be a serious mistake to conflate the confidence interval 
with the prediction interval.  These are two different indices that address two 
entirely different elements of the analysis. 
 
9.4.6. Impact of additional studies 
 
It is instructive to consider what happens to the confidence interval and to the 
prediction interval when we add studies to the analysis. 

The confidence interval tells us how precisely we can estimate the mean 
effect size.  As we add studies to the analysis, our estimate of the mean tends 
to become more precise.  Therefore, the confidence interval tends to become 
narrower. 

The prediction interval tells us how widely the treatment’s effect varies 
from one population to another.  If there are some populations where the 
treatment’s effect is as low as 0.10 and some where the effect is as high as 
0.90, then this is true regardless of how many studies we include in our 
sample.  Therefore, as we add comparable studies to the analysis, the 
prediction interval tends to remain essentially unchanged (except for small 
changes as the estimate becomes more precise). 
 
9.4.7. Formulas 
 
The confidence interval is based on the mean effect size and the standard 
error of the mean effect size.  By contrast, the prediction interval is based on 
the mean effect size and the standard deviation of the effect size.  The 
confidence interval for the mean may be computed as  
 
 1.96( )MCI M SE= ± , (5) 

where M is the sample mean and SE is the standard error of the mean.  By 
contrast, the prediction interval may be computed as 
 
 1.96( )PI M T= ± , (6) 

where T is the standard deviation of the true effects. 
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The formula for the confidence interval (5) is the same for the fixed-
effect and the random-effects model, in that both are based on the mean and 
the standard error of the mean.  Where they differ is in the computation of the 
standard error (SE).  For the fixed-effect model, the SE reflects sampling error 
based on within-study variance, whereas for the random-effects model, the 
SE reflects sampling error based on within-study variance and between-study 
variance.  In the case where the effect size is the score in one group, the 
within-study variance is the same for all studies, the standard error for the 
fixed-effect model is 

 

 VSE
N

= , (7) 

 
and for the random-effects model is 
 

 
2V TSE

N k
= + , (8) 

where V is the common within-study population variance, N is the sample size 
accumulated across studies, T2 is the estimate of the between-study variance, 
and k is the number of studies in the analysis. 

These formulas are useful for highlighting the difference between the 
fixed-effect and random-effects model, but in practice we use more general 
versions of these formulas as explained in Appendix II and Appendix VII. 

 
9.4.8. Future options 
 
While researchers sometime confuse the confidence interval with the 
prediction interval, there are several ways to avoid this confusion.  One option 
for a random-effects analysis is to report both the confidence interval and 
prediction interval, and then explain what each one means.  It would also help 
to include the prediction interval on the plot (as in these examples).  Over the 
longer term, it would helpful if the research community would adopt some 
conventions to display both the confidence interval and the prediction interval 
(J. P. Higgins et al., 2009; Riley, Higgins, & Deeks, 2011).  
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Summary 

Researchers sometimes conflate the confidence interval with the 
prediction interval. The confidence interval is an index of precision, that 
tells us how precisely we have estimated the mean effect size.  The 
prediction interval is an index of dispersion, that tells us how widely the 
effect size varies across populations.  The two are entirely distinct from 
each other. 
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9.5. Mistakes in using the I2 statistic 
 
9.5.1. Mistake 

It is widely believed that the I2 statistic tells us how much the effect size varies 
across studies.  In some cases, this belief is codified, with I2 values of 25%, 
50%, and 75% taken to reflect low, moderate, and high amounts of dispersion. 
While this interpretation of I2 is ubiquitous, it is nevertheless incorrect, and 
reflects a fundamental misunderstanding of this index. 
 
9.5.2. Details 

To explain what I2 is, I need to provide some background.  In a meta-analysis, 
we need to distinguish between the true effects and the observed effects.  The 
true effect size in any study is the effect size that we would see if we could 
somehow enroll the entire population in the study, so that there was no 
sampling error.  The observed effect size is the effect size that we see in our 
sample.  The observed effect size serves as an estimate of the true effect size, 
but invariably differs from the true effect size because of sampling error.   

For reasons discussed in Appendix VIII, the variance of the observed 
effects tends to be larger than the variance of the true effects.  For example, 
consider the analysis represented in Figure 36.  In this figure, the outside curve 
reflects the distribution of observed effects, while the inner curve reflects the 
distribution of true effects.   
 

 
Figure 36 | ADHD Analysis – True effects vs. Observed effects 
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When we ask about heterogeneity, we typically intend to ask, “How much 
does the true effect size vary across studies?”  

 
• The prediction interval, which corresponds to line [C] in the plot, tells us 

that the true effect size in 95% of all populations will fall in the 
approximate range of 0.10 to 0.90.  This is what we have in mind when 
we ask about heterogeneity.   

• By contrast, the I2 statistics tells us about the relationship between the two 
distributions.  Concretely, I2 is 47%, which tells us that the variance of 
true effects (the inner curve) is 47% as large as the variance of observed 
effects (the outer curve).  This information is relevant for other purposes, 
but is tangential to the question of how much the effect size varies. 

 
I present two sets of examples to illustrate this point.  The first set uses 

the standardized mean difference as the effect size index.  The second set uses 
the risk ratio as the effect size index.  Aside from that, the two sets of 
examples are parallel to each other, and the reader should feel free to focus 
on either one. 
 
9.5.3. Examples using the standardized mean difference 
 
Castells et al. (2011) looked at 17 studies that evaluated the effect of 
methylphenidate on cognitive function in adults with ADHD.  The effect size 
index is the standardized mean difference, with values greater than zero 
indicating that the drug increased cognitive function.  The mean effect size is 
a standardized mean difference of 0.50, and I2 is 47%. 
 Simpson, Rorie, Alper, and Schell-Busey (2014) looked at six studies 
that assessed the impact of interventions such as oversight to reduce corporate 
crime (people acting illegally on behalf of a company).  The effect size index 
is the standardized mean difference, with values greater than zero indicating 
that the intervention was associated with a drop in crime.  The mean effect 
size is a standardized mean difference of 0.10, and I2 is 92%. 

Most researchers would assume that there is less dispersion in the ADHD 
analysis (where I2 is 47%) as compared with Crime analysis (where I2 is 92%). 
However, it should be clear from Figure 37 that the opposite is true, since the 
distribution of effects for the ADHD analysis is obviously wider than the 
distribution of effects for the Crime analysis. 

In each panel, line [C] corresponds to the prediction interval, which tells 
us the dispersion of true effects in the metric of the effect-size index.  In the 
ADHD analysis (top panel) I2 is 47% and the effects vary over 80 points. In 
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the Crime analysis (bottom panel) I2 is 92% and the effects vary over 40 
points.  Thus, the higher value of I2 corresponds to smaller amount of 
dispersion. 

 
Figure 37 | Distribution of true effects for two meta-analyses 

 
The fact that the higher value of I2 corresponds to the smaller amount of 

dispersion will be confusing to researchers who assume that I2 tells us how 
much the effect size varies.  However, it will make sense for researchers who 
understand that I2 is a proportion, not an absolute value.  This becomes clear 
with reference to Figure 38. This is similar to Figure 37, but now each panel 
has two curves rather than one.  The inner curve is identical to the one in the 
prior plot, and corresponds to the dispersion of true effects.  But here, we have 
added an outer curve which corresponds to the dispersion of observed effects. 

The top panel in Figure 38 shows the ADHD analysis.  To quantify the 
difference between the inner and outer curves we can pick any point on the 
distribution and compare the width of one curve vs. the other.  At line [C] the 
inner curve covers 77 points, whereas the outer curve covers 113 points.  The 
ratio of inner to outer is thus 68% in linear units or 47% in squared units.  This 
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is the meaning of I2, which is defined as ratio of true to total variance 
(Appendix VIII). 

 

``  
Figure 38 | I2 and Prediction interval for two meta-analyses 

 
Similarly, the bottom panel in Figure 38 shows the Crime analysis. To 

quantify the difference between the inner and outer curves we can pick any 
point on the distribution and compare the width of one curve vs. the other.  At 
line [C] the inner curve covers 44 points, whereas the outer curve covers 46 
points.  The ratio of inner to outer is thus 96% in linear units or 92% in squared 
units.  This is the meaning of I2, which is defined as ratio of true to total 
variance (Appendix VIII). 

If we want to know what proportion of the variance in observed effects 
is due to variance in true effects, the answer is provided by the ratio of the 
inner curve to the outer curve.  In the top panel the ratio is 47% and in the 
bottom panel the ratio is 92%.  (In the bottom panel the two lines are so close 
to each other, they might appear to be a single line).  This is what I2 tells us.  

However, if we want to know how much the effect size varies, the answer 
is provided by the width of the inner curve in the metric of the analysis.  In 
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the top panel the true effect size varies from roughly 0.10 in some populations 
to 0.90 in others, as indicated by line [C].  In the bottom panel the true effect 
size varies from −0.10 in some populations to +0.30 in others, as indicated by 
line [C].  When we are asking about the utility of an intervention, we almost 
invariably are interested in the amount of variance, not the proportion.  As 
such, we are asking about the prediction interval, and not about I2.   

Finally, it might be helpful to show the relationship between these 
numbers and the actual forest plot for the two analyses. 

 

 
Figure 39 | ADHD analysis | Standardized difference > 0 favors treatment 

 
Figure 39 shows the ADHD analysis.  The general sense conveyed by 

the plot is that there is substantial dispersion in the observed effects, but also 
substantial sampling error (as reflected in the width of the confidence interval 
about most of the effect sizes).  The sampling error can explain some 53% of 
the observed variance, and the remaining 47% reflects variance in true effects.  
This 47%, the ratio of true to total variance, is I2.  As a separate matter, if we 
want to know the dispersion of effects on an absolute scale we turn to line 
[C]. This corresponds to the prediction interval, and tells us that true effects 
vary from around 0.10 in some populations to 0.90 in others.  This is the same 
as line [C] in the top panel of Figure 38. 

Figure 40 shows the Crime analysis.  The general sense conveyed by the 
plot is that there is only modest dispersion in the observed effects, but very 
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little sampling error in comparison.  Critically, the ratio of sampling error to 
observed variance is small.  The sampling error can explain only 8% of the 
observed variance, and the remaining 92% reflects variance in true effects. 
This 92%, the ratio of true to total variance, is I2.  As a separate matter, if we 
want to know the dispersion of effects on an absolute scale we turn to line 
[C]. This corresponds to the prediction interval, and tells us that true effects 
vary from around −0.10 in some populations to +0.30 in others.  This is the 
same as line [C] in the bottom panel Figure 38. 

 

 
Figure 40 | Crime analysis | Standardized difference > 0 favors treatment 

 
9.5.4. Examples using risk ratios 
 
Immediately above, I presented two examples where the effect-size index is 
the standardized mean difference.  Here, I will make the same points using 
two examples where the effect-size index is the risk ratio. 

Kasapis et al. (2009) looked at eight studies that evaluated the impact of 
a stent implantation on the failure rate for angioplasty. The effect size is a risk 
ratio, with ratios below one indicating that stents reduced the risk of failure.  
The mean risk ratio was 0.283, and I2 is 56%. 
 Lin et al. (2013)   looked at the effects of no-smoking laws on the risk of 
acute myocardial infarction.  As recently as the 1990s, most cities allowed 
smoking in public spaces.  Over the more recent decades, governments have 
passed laws that prohibit smoking in restaurants, workplaces, airports, and so 
on.  A number of studies have been performed to see if the risk of having a 
heart attack changed when these laws were implemented.  The effect size is a 
risk ratio, with ratios below one indicating a reduction in events.  The mean 
risk ratio was 0.877, and I2 is 92%. 

Most researchers would assume that there is less dispersion in the Stents 
analysis (where I2 is 56%) as compared with Smoking analysis (where I2 is 
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92%). However, it should be clear from  Figure 41 that the opposite is true, 
since the distribution of effects for the Stents analysis is obviously wider than 
the distribution of effects for the Smoking analysis. 

In each panel, line [C] corresponds to the prediction interval, which tells 
us the dispersion of true effects in the metric of the effect-size index.  In the 
Stents analysis (top panel) I2 is 56% and the effects vary over 86 points. In 
the Smoking analysis (bottom panel) I2 is 92% and the effects vary over 25 
points.  Thus, the higher value of I2 corresponds to the smaller amount of 
dispersion. 

 
Figure 41 | Distribution of true effects for two meta-analyses 

 
The fact that the higher value of I2 corresponds to the smaller amount of 

dispersion will be confusing to researchers who assume that I2 tells us how 
much the effect size varies.  However, it will make sense for researchers who 
understand that I2 is a proportion, not an absolute value.  This becomes clear 
with reference to Figure 42.  This is similar to Figure 41, but now each panel 
has two curves rather than one.  The inner curve is identical to the one in the 
prior plot, and corresponds to the dispersion of true effects.  But here, we have 
added an outer curve which corresponds to the dispersion of observed effects. 
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 The top panel in Figure 42 shows the Stents analysis.  To quantify the 
difference between the inner and outer curves we can pick any point on the 
distribution and compare the width of one curve vs. the other.  At line [C] the 
inner curve covers 86 points, whereas the outer curve covers 140 points.  The 
ratio of inner to outer in squared units in the log metric is 56%.  This is the 
meaning of I2, which is defined as ratio of true to total variance (Appendix 
VIII). 

Similarly, the bottom panel in Figure 42 shows the Smoking analysis.  
To quantify the difference between the inner and outer curves we can pick 
any point on the distribution and compare the width of one curve vs. the other.  
At line [C] the inner curve covers 25 points, whereas the outer curve covers 
27 points.  The ratio of inner to outer in squared units in the log metric is 92% 
(Appendix VIII).  This is the meaning of I2, which is defined as ratio of true 
to total variance.   
 

``  
Figure 42 | I2 and Prediction interval for two meta-analyses 

 
If we want to know what proportion of the variance in observed effects 

is due to variance in true effects, the answer is provided by the ratio of the 
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inner curve to the outer curve.  In the top panel the ratio is 56% and in the 
bottom panel the ratio is 92%.  (In the bottom panel the two lines are so close 
to each other, they might appear to be a single line).  This is what I2 tells us. 

However, if we want to know how much the effect size varies, the answer 
is provided by the width of the inner curve on the metric of the analysis.  In 
the top panel the true risk ratio varies from roughly 0.08 in some populations 
to 0.96 in others, as indicated by line [C].  In the bottom panel the true effect 
size varies from 0.76 in some populations to 1.01 in others, as indicated by 
line [C].  This is what the prediction interval tells us.  When we are asking 
about the utility of an intervention, we almost invariably are interested in the 
amount of variance, not the proportion.  As such, we are asking about the 
prediction interval, and not about I2. 

Finally, it might be helpful to show the relationship between these 
numbers and the actual forest plot for the two analyses. 

 

 
Figure 43 | Stents | Risk ratio < 1 favors treatment 

 
Figure 43 shows the Stents analysis.  The general sense conveyed by the 

plot is that there is substantial dispersion in the observed effects, but also 
substantial sampling error (as reflected in the width of the confidence interval 
about most the effect sizes).  The sampling error can explain some 44% of the 
observed variance, and the remaining 56% reflects variance in true effects.  
This 56%, the ratio of true to total variance, is I2.  As a separate matter, if we 
want to know the dispersion of effects on an absolute scale we turn to line 
[C]. This corresponds to the prediction interval, and tells us that true effects 
vary from around 0.08 in some populations to 0.96 in others.  This is the same 
as line [C] in the top panel Figure 42. 
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Figure 44 shows the Smoking analysis.  The general sense conveyed by 
the plot is that there is only modest dispersion in the observed effects, but 
even less sampling error.  Critically, the ratio of sampling error to observed 
variance is small.  The sampling error can explain only 8% of the observed 
variance, and the remaining 92% reflects variance in true effects. This 92%, 
the ratio of true to total variance, is I2.  As a separate matter, if we want to 
know the dispersion of effects on an absolute scale we turn to line [C]. This 
corresponds to the prediction interval, and tells us that true effects vary from 
around 0.76 in some populations to 1.01 in others.  This is the same as line 
[C] in the bottom panel Figure 42.  

 

 
Figure 44 | Smoke-free legislation | Risk ratio < 1 indicates reduced risk 
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9.5.5. Words matter 
 
The I2 statistic is defined as being a proportion, not an absolute amount of 
dispersion.  A proportion and an absolute amount are two different things.  
Nevertheless, researchers often define I2 (correctly) as being a proportion or 
percentage, and then ignore this definition and speak about I2 (incorrectly) as 
being an index of dispersion on an absolute scale.  This is an important issue 
because if we paid attention to the words, we would avoid the mistake of 
misinterpreting I2.  

Consider the following examples. 
 
9.5.6. Example | Drugs for ADHD 

Cunill, Castells, Tobias, and Capellà (2016) looked at the impact of drugs on 
ADHD.  They write “Between-study heterogeneity was assessed using 
Cochran’s Q test (Cochran 1954) jointly with the I2 index (Higgins et al. 
2003), which enables the percentage of variation in the combined estimate 
that can be attributed to heterogeneity to be established (< 25%: low 
heterogeneity; 25 to 50 %: moderate; 50-75%: high; > 75%: very high).”  The 
first part of the sentence defines I2 as a percentage of variance.  The part in 
parentheses suggests that I2 is an index of absolute variance (e.g., “low 
heterogeneity”).  These are two different things.  If I2 is the first (which it is) 
then logically it cannot also be the second. 
 
9.5.7. Example | Exercise for chronic back pain 

Ferreira, Smeets, Kamper, Ferreira, and Machado (2010)  performed a meta-
analysis that looked at the impact of exercise for chronic back pain.  They 
write “Therefore, the [sic] I2 provides the percentage [italics in the original] 
of total variation across studies explained by heterogeneity rather than chance 
(J. P. Higgins, Thompson, Deeks, & Altman, 2003). For instance, an I2 of 0% 
indicates that all variability in effect estimates is due to sampling error and 
not to heterogeneity among trials.  Conversely, an I2 of 75% suggests that 
three quarters of the variability in effect estimates can be attributed to 
inconsistency among trials.  An I2 value of more than 75% was considered to 
represent high heterogeneity, an I2 of 50% to 75% was considered to represent 
moderate heterogeneity, and an I2 of less than 25% was considered to 
represent low heterogeneity.'' The word “percentage” is italicized in the 
original to emphasize the fact that this is a percentage, but the authors 
nevertheless proceed to treat the index as an absolute value.  Ironically, the 
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focus of this paper is on the heterogeneity in effects, and so the fact that they 
use the wrong index to discuss heterogeneity is especially problematic. 
 
9.5.8. In context 

Hundreds of papers define I2 as a proportion and then proceed to interpret it 
as an absolute value.  This is the statistical equivalent of someone in a car 
dealership being told that they will need to pay only 80% of the usual price, 
and then trying to pay $80 for the car.  A proportion and an absolute value are 
not the same thing. 
 
9.5.9. Using the I2 statistic correctly 
 
While I2 does not tell us how much the effect size varies, it is useful for the 
following purposes (Borenstein et al., 2017; J. P. Higgins & Thompson, 2002; 
J. P. Higgins et al., 2003).  

 
• If I2 is zero, then all the variance in observed effects is due to sampling 

error.  The variance in true effects is estimated as zero.   
• If we are looking at a forest plot, I2 provides context for understanding 

that plot.  If I2 is near zero, the variance of true effects is only a small 
fraction of that suggested by the plot.  As I2 increases, that proportion 
increases. 

• If we are working with a set of meta-analyses where the variance of 
observed effects is reasonably consistent, there will be a strong 
correlation between I2 and the absolute amount of variance.  Within that 
context, I2 can provide information about the relative amounts of 
dispersion across analyses. 

• The I2 statistic is useful to statisticians who are evaluating the properties 
of various statistics.  For example, if someone wanted to run simulations 
to see how statistical power is affected by the ratio of true to total 
variance, they could do so for various values of I2. 

• Sometimes, we do care about the proportion of variance rather than the 
absolute amount of variance.  For example, if we have various ways of 
conducting studies and we want to know which have the smallest amount 
of sampling error, I2 is the index that allows us to address this question. 
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9.5.10. Further readings 
 
The original papers on I2 are (J. P. Higgins & Thompson, 2002; J. P. Higgins 
et al., 2003).  For a more detailed discussion of the issues raised in this section, 
see (Borenstein et al., 2017).  For related papers see (Borenstein, 2019; Coory, 
2010; J. P. Higgins, 2008; Huedo-Medina, Sanchez-Meca, Marin-Martinez, 
& Botella, 2006; Ioannidis, 2008a; Patsopoulos, Evangelou, & Ioannidis, 
2008; Rucker, Schwarzer, Carpenter, & Schumacher, 2008).  
 

 
 
 

Summary 

When we ask about heterogeneity, we intend to ask how much the true 
effect size varies across studies.  This question is addressed by the 
prediction interval which tells us (for example) that the true effect size in 
most populations will fall in the range of 0.05 to 0.95.  It is not addressed 
by the I2 statistic.  The I2 statistic tells us what proportion of the variance 
in observed effects reflects variation in true effects, rather than sampling 
error.  It does not tell us how much variation there is. 
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9.6. Classifying heterogeneity as low, moderate or high 
 
9.6.1. Mistake 

In some fields of research, it is common for papers that report I2 to categorize 
the heterogeneity as being low, moderate or high, based on the I2 value.  This 
is a fundamental mistake. 
 
9.6.2. Details 

Immediately above, I showed that I2 is a proportion, not an index of absolute 
dispersion.  It does not tell us how much the effects vary.  Since I2 does not 
tell us how much the effects vary, the idea of using I2 to create categories of 
dispersion is a non-sequitur.   
 

 
Figure 45 | Distribution of true effects for two meta-analyses 
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The example discussed earlier (section 9.5.3) is re-displayed in Figure 
45.  The top panel shows the impact of methylphenidate on the cognitive 
function of adults with ADHD.  The bottom panel shows the impact of 
interventions to reduce corporate crime.  In the top panel I2 is 47% and in the 
bottom panel I2 is 92%, so based on the proposed classifications we would 
say that the heterogeneity at the top is moderate while that at the bottom is 
high.  This obviously makes no sense, since the dispersion in the top panel is 
substantially greater than the dispersion in the bottom panel. 

 

 
Figure 46| Distribution of true effects for two meta-analyses 

 
Similarly, the example discussed earlier (section 9.5.4) is re-displayed in 

Figure 46.  The top panel shows the impact of stents on the risk of failure in 
angioplasty.  The bottom panel shows the impact of anti-smoking legislation 
to reduce the risk of myocardial infarction.  In the top panel I2 is 56% and in 
the bottom panel I2 is 92%, so based on the proposed classifications we would 
say that the heterogeneity at the top is moderate while that at the bottom is 
high.  This obviously makes no sense, since the dispersion in the top panel is 
substantially greater than the dispersion in the bottom panel. 
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Since I2 does not tell us how much the effects vary, it obviously cannot 
be used to classify analyses as having a low, moderate, or high amount of 
variation.  However, there is an additional point to be made.  Let us assume 
for a moment that I2 actually told us the amount of variation.  What does it 
mean to say that a particular amount of dispersion is low, moderate, or high, 
unless we put that dispersion in the context of a specific outcome?   Consider 
the following four examples. 
 
9.6.3. Example | Allegiance to treatment 
 
Munder, Fluckiger, Gerger, Wampold, and Barth (2012)  performed a meta-
analysis to see if the researchers’ allegiance to one treatment vs. another 
would bias the outcome in studies that compared the two treatments.  The 
effect size index is the standardized mean difference.  They write “In addition, 
we report I2 as another common quantitative measure of heterogeneity, which 
can be interpreted as the percentage of overall heterogeneity that is due to 
variation of the true effects.  An I2 value of 0% indicates no heterogeneity.  I2 
values of 25%, 50%, and 75% can be regarded as markers of low, moderate, 
and strong heterogeneity, respectively (Higgins, Thompson, Deeks, & 
Altman, 2003).”  
 
9.6.4. Example | Prevalence of pelvic-floor disorders 
 
Islam et al. (2017)  published the protocol for a meta-analysis to assess the 
prevalence of pelvic-floor disorders in women in low and middle-income 
countries.  The effect size index is the prevalence of the disorder.  They plan 
to use values of I2 to classify the heterogeneity as being low, moderate, or 
high. 
 
9.6.5. Example | Preventing substance abuse 
 
Onrust, Otten, Lammers, and Smit (2016)  performed a meta-analysis to 
assess the impact of interventions to prevent substance abuse.  The effect size 
index is the standardized mean difference.  They used values of I2 to classify 
the heterogeneity as being low, moderate, or high. 
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9.6.6. Example | Exercises for back pain 
 
Ferreira et al. (2010)  report on a meta-analysis to assess the impact of 
exercises for back pain.  The effect size index is the difference in means.  They 
used values of I2 to classify the heterogeneity as being low, moderate, or high. 
 
9.6.7. In context 

The idea of classifying the amount of heterogeneity based on I2 would only 
make sense if I2 was an index of absolute dispersion, and it is not.  Therefore, 
the whole idea is a non-starter. 

Additionally, even if the classifications were based on an index of 
absolute dispersion (such as T) the idea that we can have classifications of 
low, moderate or high variance that apply universally, makes no sense.  This 
would require that a similar amount of variance has the same substantive 
meaning for an analysis of allegiance to treatment, an analysis of the 
prevalence of pelvic-floor disorder, an analysis of interventions to prevent 
substance abuse, and an analysis of the impact of exercises on back pain – 
among thousands of other analyses.   

Indeed, the suggestion is not merely that (for example) 50% is a 
moderate amount of heterogeneity for risk ratios.  The suggestion is that it is 
a moderate amount of heterogeneity for risk ratios, mean differences, 
prevalence, and even simple means in one-arm studies.  A moment’s 
reflection should make it clear that this idea makes no sense without 
additional context.   

Where did these classifications originate?  

When J. P. Higgins et al. (2003) proposed a link between values of I2 and 
absolute amount of dispersion, that was for a specific context. The authors 
were primarily concerned with the Cochrane Database of systematic reviews, 
and the dispersion of observed effects tended to be reasonably consistent 
across analyses.  In that situation, a meta-analysis with a low value of I2 
tended to have less dispersion in effects as compared with a similar analysis 
that had a higher value of I2, and the labels were intended to capture this. The 
idea that these labels could somehow capture the amount of dispersion in 
analyses outside of the Cochrane database was never their intent. 
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Summary 

The idea of using I2 to classify heterogeneity as being low, moderate, or 
high makes no sense for two reasons. 
 
First, I2 is a proportion, not an index of absolute dispersion. It does not tell 
us how much variance there is. 
 
Second, the idea that we can classify heterogeneity into categories without 
additional context is silly, since an amount of heterogeneity that would be 
considered high in one context would be considered low in another. 
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9.7. Using the p-value as index of heterogeneity 
 
9.7.1. Mistake 

Researchers typically report a test for heterogeneity as part of a meta-analysis.  
Some researchers assume that the test for heterogeneity speaks to the amount 
of dispersion in the effects.  A non-significant p-value is interpreted as 
evidence that the effects are consistent, and a significant p-value is taken as 
evidence that the effects vary in some substantive way.  This is a mistake. 
 
9.7.2. Details 

A meta-analysis typically includes a test for heterogeneity.  The null 
hypothesis for this test is that there is no variation at all in true effect sizes.  
The test statistic (Q) along with its degrees of freedom yields a p-value.  A 
significant p-value allows us to reject this null hypothesis, and to conclude 
that the effect size does vary across studies.  The criterion alpha for this test 
is conventionally set at 0.05 in some disciplines, and at 0.10 in others (Berman 
& Parker, 2002; Petitti, 2001). 

As is true for all null-hypothesis significance tests, the only information 
provided by a significant p-value is that the variation in effects size is 
probably not zero (more correctly, if the true heterogeneity is zero, it would 
be unusual to see a test statistic this high or higher).   
 
The p-value for the test of heterogeneity is a function of three items – 

 
1. The estimated amount of heterogeneity 
2. The precision of the individual studies 
3. The number of studies 

 
If there are many studies (and/or large studies) the p-value might be 

statistically significant even if the amount of heterogeneity is trivial.  
Conversely, if there are few studies (and/or small studies) the p-value might 
not be statistically significant even if the amount of heterogeneity is 
substantial.  For this reason, the p-value cannot serve as a surrogate for the 
amount of variation.    

Two examples will make this clear.  
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9.7.3. Example | Impact of preoperative statin therapy 
 
Liakopoulos et al. (2008) looked at the impact of preoperative statin therapy 
on the incidence of stroke in patients undergoing cardiac surgery (Figure 47).  
The effect size is the odds ratio, with values less than 1.0 indicating that the 
treatment was helpful.  The mean effect size is 0.741, which tells us that the 
treatment reduces the odds of a stroke by 74% on average.  The test for 
heterogeneity yields a Q-value of 9.105 with 5 degrees of freedom, and a p-
value of 0.105.  If someone simply looked at the non-significant p-value, they 
might assume that there was only a small amount of heterogeneity. 

In fact, the results suggest that there may be substantial heterogeneity.  
The prediction interval [C] is 0.32 to 1.71, which tells us that in some 
populations the treatment reduces the odds of a bad outcome by 68%, while 
in others it increases the odds of a bad outcome by 71%.  

The p-value is a function of (1) the estimated amount of dispersion (2) 
the number of studies and (3) the precision of those studies.  In this case our 
best estimate is that there is substantial dispersion.  However, the p-value is 
not significant primarily because there are only a few studies, and these are 
not terribly precise. 
 

 
Figure 47 | Preoperative statin therapy | Odds ratio < 1 favors treatment 

 
9.7.4. Example | Impact of smoke-free legislation 
 
Lin et al. (2013)  looked at the impact of smoke-free legislation on acute 
myocardial infarction (MI) (Figure 48).  The mean risk ratio was 0.877, which 
indicates that the risk of MI was reduced on average by some 12%.  The test 
for heterogeneity yields a Q-value of 431.106 with 36 degrees of freedom and 
a p-value of < 0.0000000001. If someone simply looked at the significant p-
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value, they might assume that there was an exceptional amount of 
heterogeneity. 

However, that is not the case here.  In fact, the amount of heterogeneity 
was modest.  The prediction interval [C] is 0.75 to 1.02, which tells us that in 
some populations, the treatment reduces the risk of a bad outcome by 25%, 
while in others it increases the risk of a bad outcome by 2%.  

The p-value is a function of (1) the estimated amount of dispersion (2) 
the number of studies and (3) the precision of those studies.  In this case the 
amount of dispersion is modest.  The p-value is statistically significant 
primarily because of there are many studies, and many of these are precise.     

 

 
Figure 48 | Smoke-free legislation |Risk ratio < 1 indicates reduced risk 
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Figure 49 allows us to compare these two analyses.  In this figure, the 
top plot corresponds to the statin analysis where the p-value for a test of 
heterogeneity is 0.105 but there the estimated dispersion is substantial.  The 
bottom plot corresponds to the smoking analysis where the p-value for a test 
of heterogeneity is 0.0000000001 but the estimated dispersion is relatively 
small.  Additional details are presented in Table 3.   

As in these examples, the p-value tells us nothing about the amount of 
dispersion.  Indeed, it does not even tell us which of two analyses had more 
dispersion. 
 

 
Figure 49 | Distribution of true effects for two meta-analyses 

 
 

Table 3 | Heterogeneity in two analyses 

Study Index Mean p-value Prediction 
Interval 

Statins Odds ratio 0.74 0.105 0.32 to 1.71 
Smoking Risk ratio 0.88 < 0.0000000001 0.75 to 1.02 
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Summary 

The p-value for a test of heterogeneity is a function of (1) the estimated 
amount of heterogeneity, (2) the precision of the individual studies, and 
(3) the number of studies in the analysis.   

The p-value may be statistically significant when the estimated 
heterogeneity is trivial.   Conversely, the p-value may not be statistically 
significant when the estimated heterogeneity is substantial.  Therefore, the 
p-value should never be used as a surrogate for the amount of 
heterogeneity.  
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9.8. Using the Q-value as index of heterogeneity 
 
9.8.1. Mistake 

Researchers sometimes use the Q-value as an index of dispersion, and assume 
that a large Q-value reflects a substantial amount of heterogeneity.  This is a 
mistake. 
 
9.8.2. Details 

The Q-value is not an index of dispersion.  Rather, it is simply the sum of 
squared deviations, on a standardized scale.  The Q-value in a meta-analysis 
serves a similar function to the sum of squares in a primary study.  In a 
primary study we compute the sum of squares as an interim step to computing 
the variance and the standard deviation.  By itself, the sum of squares tells us 
nothing useful about the dispersion. 

The issues here are similar to those outlined for the p-value in the prior 
section.  Specifically, the value of Q depends on 

 
1. The amount of observed heterogeneity 
2. The precision of the individual studies 
3. The number of studies 

 
If there are many studies (and/or large studies) the Q-value might be high 

even if the amount of observed heterogeneity is trivial.  Conversely, if there 
are few studies (and/or small studies) the Q-value might be low even if the 
amount of heterogeneity is substantial.  For this reason, the Q-value cannot 
serve as a surrogate for the amount of variation.    

To assume that the Q-value tells us something about the extent of 
dispersion in a meta-analysis is analogous to assuming that the sum of squares 
tells us something about the extent of dispersion in a primary study.   In a 
primary study, the sum of squares (by itself) does not provide that 
information.  In a meta-analysis the value of Q (by itself) does not provide 
that information. 

The two examples in the immediately prior section (9.7) can serve here 
as well. 
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9.8.3. Example | Impact of preoperative statin therapy 
 
Liakopoulos et al. (2008)  looked at the impact of preoperative statin therapy 
on the incidence of stroke in patients undergoing cardiac surgery (Figure 50).  
The effect size is the odds ratio, with values less than 1.0 indicating that the 
treatment was helpful.  The mean effect size is 0.741, which tells us that the 
treatment reduces the odds of a stroke by 74% on average.  The test for 
heterogeneity yields a Q-value of 9.105 with 5 degrees of freedom, and a p-
value of 0.105. If someone simply looked at the small Q-value, they might 
assume that there was only a small amount of heterogeneity. 

In fact, the results suggest that there may be substantial heterogeneity.  
The prediction interval [C] is 0.32 to 1.71, which tells us that in some 
populations the treatment reduces the odds of a bad outcome by 68%, while 
in others it increases the odds of a bad outcome by 71%.  

The Q-value is a function of (1) the amount of observed dispersion, (2) 
the number of studies and (3) the precision of those studies.  In this case, our 
best estimate is that there is substantial dispersion, but the Q-value is small 
primarily because there are only a few studies, and these are not terribly 
precise. 
 

 
Figure 50 | Preoperative statin therapy | Odds ratio < 1 favors treatment 

 
9.8.4. Example | Impact of smoke-free legislation 
 
Lin et al. (2013)  looked at the impact of smoke-free legislation on acute 
myocardial infarction (MI) (Figure 51).  The mean risk ratio was 0.877, which 
indicates that the risk of MI was reduced on average by some 12%.  The test 
for heterogeneity yields a Q-value of 431.106 with 36 degrees of freedom and 
a p-value of < 0.0000000001. If someone simply looked at the magnitude of 
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the Q-value, they might assume that there was an exceptional amount of 
heterogeneity.  

However, that it not the case here.  In fact, the amount of heterogeneity 
is modest.  The prediction interval [C] is 0.75 to 1.02. This tells us that in 
some populations, the treatment reduces the risk of a bad outcome by 25%, 
while in others it increases the risk of a bad outcome by 2%.  

The Q-value is a function of (1) the amount of observed dispersion, (2) 
the number of studies and (3) the precision of those studies.  In this case, our 
best estimate is that there is only modest dispersion, but the Q-value is high 
primarily because there are many studies, and many of these are precise.     
 

 
Figure 51 | Smoke-free legislation | Risk ratio < 1 indicates reduced risk 
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Figure 52 allows us to compare these two analyses.  In this figure, the 
top plot corresponds to the statin analysis where the Q-value is 9.105 but there 
is substantial dispersion in effects.  The bottom plot corresponds to the 
smoking analysis where the Q-value is 431.106 but the amount of dispersion 
is relatively small.  Additional details are presented in Table 4.   

It should be obvious from these examples that the Q-value (even when 
paired with its degrees of freedom) does not tell us how much the effect size 
varies across studies. 
 

 
Figure 52 | Distribution of true effects for two meta-analyses 

 

Table 4 | Heterogeneity in two analyses 

Study Index Mean Q df Prediction 
Interval 

Statins Odds ratio 0.74 9.1 5 0.32 to 1.71 
Smoking Risk ratio 0.88 431.1 36 0.75 to 1.02 
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9.8.5. Q does tell us one thing about the dispersion  

The Q-value does provide one item of information about the heterogeneity.  
If Q is less than the degrees of freedom (the number of studies minus one), 
the variance will be estimated as zero.  Conversely, if Q exceeds the degrees 
of freedom, the variance will be estimated as positive.  However, that is the 
only information we can get directly from Q and the degrees of freedom.  To 
press Q into service as an index of dispersion would be a mistake.   

 
 

 

Summary 

The Q-value for a test of heterogeneity is a function of (1) the amount of 
observed heterogeneity, (2) the precision of the individual studies, and (3) 
the number of studies in the analysis.   

The Q-value may be large when the estimated heterogeneity is trivial.  
Conversely, the Q-value may be small when the estimated heterogeneity 
is substantial.  Therefore, the Q-value should never be used as a surrogate 
for the amount of heterogeneity.  
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9.9. Estimates of variance may not be reliable  
 

9.9.1. Mistake 

In any random-effects analysis we compute an estimate of the between-study 
variance, and that estimate will differ from the true value.  While researchers 
are aware of this in general, many do not recognize the potential severity of 
the problem. 
 
9.9.2. Details 

In the textbook case of a random-effects analysis we enumerate a universe of 
studies, sample studies from that universe, and generalize our results to that 
universe.  The variance of true effects in that universe is called τ2, where we 
use the Greek letter to indicate that this is the parameter (the true value).  We 
can never see that value, but (in a frequentist analysis) we estimate it using 
the data in our sample, and the estimate is called T2.  It is important to 
recognize that T2 does not always provide a reliable estimate of τ2.   

It might help to draw an analogy to a primary study employing a 
between-group design.  Typically, this type of primary study reports the 
variance and standard deviation of scores based on a sample of at least 30 
participants.  In some fields the typical sample size is substantially higher, but 
it is generally not much lower than 30.  If someone tried to publish a paper 
for a between-group design study based on a sample size of five subjects (for 
example), we would (rightfully) be concerned that the statistics were not 
reliable. 

Suppose that we perform a random-effects meta-analysis using five 
studies with a hundred people in each.  Researchers sometime assume that the 
effective sample size is five hundred people.  In fact, however, the estimates 
of the mean and variance are based on an effective sample size of (less than) 
five.  And, just as a sample size of five people will generally not yield a 
reliable estimate of the between-person variance in a primary study, a sample 
size of five studies will generally not yield a reliable estimate of the between-
study variance in a meta-analysis.   

The precision with which we can estimate τ2 is a function of the true 
value of τ2, of the number of studies in the analysis, and of the error variance 
in those studies.  If all the estimation error variances are equal to VM and the 
effects are normally distributed, the exact variance of the method of moments 
estimator of τ2 is given by 
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where VM is the within-study error variance (assumed to be the same for all 
studies), τ2 is the true between-study variance, and k is the number of studies. 
It follows that if VM and/or τ2 are non-trivial, the estimate of τ2 will have poor 
precision unless we have a substantial number of studies. 

The same issue applies to all the statistics that we employ to quantify 
heterogeneity, including T2, T, I2, and the prediction interval.  Thus, we cannot 
mitigate this problem by switching to an alternate index.  When we expect 
that the heterogeneity is non-trivial and we have a small number of studies, 
the best course of action is to report the extent to which our estimates are 
unreliable. 

Ironically, while this lack of precision affects all the statistics, the 
practical implications of this problem are most serious for the prediction 
interval.  Since researchers generally misinterpret the meaning of I2 and T2, if 
we estimate these values incorrectly, there is little additional harm done.  By 
contrast, researchers do understand the prediction interval, and if this interval 
is wrong, researchers may reach the wrong conclusions.  For this reason, it is 
probably best to report the prediction interval only if it is based on at least ten 
studies. 
 

 
 
 
 

Summary 

We need a reasonable number of studies to estimate heterogeneity 
reliably.  If we don’t have a sufficient number of studies, all heterogeneity 
statistics are suspect. 
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9.10. Statistics for heterogeneity refer to fixed-effect 
model 
 

9.10.1. Mistake 

Some computer programs report statistics for Q, I2 and T2, on the line for the 
fixed-effect analysis.  Researchers sometimes assume that these statistics 
apply to the fixed-effect analysis, and then wonder where they can find these 
values for the random-effects analysis.  This is a mistake. 
 
9.10.2. Details 

There is only one estimate for the Q-value reported in a meta-analysis.  Based 
on this estimate we generate various statistics, some of which apply to the 
fixed-effect model and some of which apply to the random-effects model. 

The p-value applies to the fixed-effect model.  This model requires that 
all studies share a common effect size, and if the p-value is statistically 
significant we conclude that this assumption has been violated. 

While the p-value applies to the fixed-effect model, all estimates of 
variance (T2, T, and I2) apply to the random-effects model.  Importantly, these 
estimates apply only to the random-effects model, since under the fixed-effect 
model these are all zero by definition.   

The reason that some computer programs display these statistics adjacent 
to the fixed-effect estimates is because the statistics are computed using a 
model where T2 is zero, and this happens to correspond to the weights used 
for the fixed-effect model.  The decision to display these statistics in one 
section or another is of no consequence. 
 
9.10.3. Example | Serotonin-Aggression relation 
 
Duke, Bègue, Bell, and Eisenlohr-Moul (2013)  ran a meta-analysis looking 
at the Serotonin-Aggression relation in humans.  They wrote “Mean weighted 
effect sizes are presented for both fixed-effects and random-effects models 
with estimates of heterogeneity (Q and I2 statistics) derived from the fixed-
effects model (Italics added).” The phrase in italics is misleading, and it would 
be better to omit this phrase.  
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Summary 

Researchers sometimes expect that there is one set of heterogeneity 
statistics for the fixed-effect model and a separate set for the random-
effects model.  In fact, we compute only one set of statistics.  These 
statistics are computed using fixed-effect weights, but some apply to the 
fixed-effect model and others to the random-effects model. 
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9.11. Putting it all together 
 
When we ask about heterogeneity in a meta-analysis, our goal is to understand 
the clinical or substantive implications of the heterogeneity.  We need to know 
the if the treatment’s effect is relatively consistent across studies, or if it varies 
substantially.  We need to know if the treatment is always helpful, or if it is 
helpful in some populations and harmful in others.   

A case in point is the impact of methylphenidate on adults diagnosed with 
ADHD.  The mean effect is a standardized mean difference of roughly 0.50, 
but to understand the potential utility of this drug we need to also know how 
much the effect size varies.  When we ask about heterogeneity, we intend to 
ask if the distribution of effects resembles Figure 53, Figure 54, or Figure 55.  
Is it the case that – 

 
A. The impact is as low as 0.40 in some populations, and as high as 0.60 in 

others (Figure 53). 
B. The impact is as low as 0.30 in some populations, and as high as 0.70 in 

others (Figure 54). 
C. The impact is as low as 0.10 in some populations, and as high as 0.90 in 

others (Figure 55). 
 

When we discuss the utility of the drug, this is what we have in mind.  
Some might suggest that the drug should be recommended for general use 
only if the dispersion looks like Figure 53, while others might suggest that it 
should be recommended immediately even if the dispersion looks like Figure 
54 or Figure 55.  What should be clear, though, is that this discussion should 
be based on the dispersion represented in these figures.  

The one statistic that directly addresses this dispersion is the prediction 
interval.  In this example the prediction interval is 0.05 to 0.95.  This tells us 
that the effect size varies from as low as 0.05 in some populations to as much 
as 0.95 in others (corresponding roughly to Figure 55).   The prediction 
interval addresses this question using the same scale as the effect size, so the 
information is unambiguous.  It tells us not only how much the effect size 
varies, but also reports the interval on a meaningful scale.  Not only does it 
tell us that the effects vary over 90 points.  It also tells us that it varies from 
0.05 to 0.95 rather than (for example) −0.45 to +0.45 or 0.50 to 1.40. 
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Figure 53 | Effect size varies from 0.40 to 0.60 

 

 
Figure 54 | Effect size varies from 0.30 to 0.70 

 

 
Figure 55 | Effect size varies from 0.10 to 0.90 
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Unfortunately, researchers rarely report the prediction interval.  Rather, 
they typically report statistics such as Q, p, I2, and T2 which do not allow us 
to determine whether the dispersion looks like Figure 53, Figure 54, or Figure 
55. Worse, researchers often push these statistics into service as surrogates 
for the amount of dispersion, and reach incorrect conclusions. 

In some fields, the I2 statistic has become ubiquitous as the preferred 
index of dispersion.  This is a fundamental misinterpretation of this statistic.  
The I2 statistic is a proportion, not an absolute value.  It tells us what 
proportion of the observed variance reflects variation in true effects, rather 
than sampling error.  It does not tell us how much that variance is.  It makes 
no sense to make a recommendation about the drug based on the fact that I2 
is 47%, because that value could correspond to any of the three figures 
pictured, or to others. 

This misuse of I2 has been compounded by the fact that I2 is commonly 
used to classify heterogeneity as being low, moderate, or high.  This idea 
makes no sense for two reasons.  First, the categories are based on I2, which 
does not correspond to an absolute amount of dispersion.  Second, the idea 
that we can classify heterogeneity as low, moderate, or high without 
additional context is silly, since an amount of heterogeneity that would be 
considered low in one context would be considered high in another. 

Finally, it is important to recognize that estimates of T2, and by extension 
estimates of all indices for heterogeneity, are often imprecise.  It is probably 
best to report the prediction interval only when the analysis includes at least 
ten studies.  While the imprecision affects all the indices, the practical 
implications of a mistake are potentially more serious for the prediction 
interval since this is an index that researchers would be using to make 
decisions. 

When there is a sufficient number of studies to report a useful estimate 
of the prediction interval, we should report it.  When we cannot report a useful 
estimate of this interval it would be best to omit it, and explain why. 

 

 





 

10. MISTAKES RELATED TO SIGNIFICANCE TESTING 
 
10.1. Overview 
 
A common problem in the analysis of primary studies is that researchers 
sometimes focus on a test of statistical significance, and misinterpret the 
meaning of this test.  The same problem applies in meta-analysis, with some 
additional complications.  I will briefly review the problem as it applies to 
primary studies, and then discuss the extension of this issue to meta-analysis. 
 
10.1.1. NHST vs. effect-size estimation in primary studies 
 
When we perform a primary study to assess the impact of an intervention, the 
analysis can focus on either of two approaches. 
   
• One is the null-hypothesis significance test (NHST).  We pose the null 

hypothesis, that the effect size is precisely zero, and then perform a 
significance test.  If the p-value is less than the criterion alpha (typically 
0.05) we reject the null hypothesis and conclude that the true effect size 
is not precisely zero. 

• The other is effect-size estimation.   We report the mean effect size, and 
additionally the confidence interval which speaks to the precision with 
which we have estimated the effect size.  In 95% of all studies the 
confidence interval will include the true effect size. 
 

10.1.2. Cases where NHST is the preferred approach 
 
There are cases where our intent really is to test the null hypothesis.  For 
example, in a properly designed randomized trial to compare homeopathic 
compounds vs. placebo, our intent would be to test the null hypothesis that 
the two are equally effective.  It would be important to know if one is any 
better than the other, since any difference greater than zero would challenge 
the fundamental tenets of science.  In this case, the magnitude of the 
difference would be unimportant (Jonas, Kaptchuk, & Linde, 2003).  
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Another example where we really care about testing the null hypothesis 
is when we plan to submit the results to a regulatory agency in support of a  
new drug.  If the criterion for approval is that we reject the null hypothesis, 
then we need to actually do so.   

 
10.1.3. Cases where effect-size estimation is the preferred approach 
 
By contrast to the above, in the overwhelming majority of analyses intended 
to identify the utility of an intervention, effect-size estimation is the preferred 
approach.  The reason is simple.  To assess the clinical or substantive utility 
of an intervention we need to know the magnitude of the effect, and not 
merely that the impact is not zero.  Effect-size estimation addresses the 
former, while NHST is limited to the latter (Borenstein, 1994, 1997, 2000; 
Cohen, 1994; Sander Greenland et al., 2016; Harlow, 1997; Harlow, Mulaik, 
& Steiger, 1997; Schmidt & Hunter, 1997).  

For example, suppose that we are testing the impact of tutoring for high-
school students.  If we were working with NHST and the test was statistically 
significant, we would reject the null hypothesis.  This tells us only that the 
impact of the tutoring is not zero.  By contrast, if we were working with effect-
size estimation we would report (for example) that tutoring boosts scores by 
10 points, or 20 points, or 30 points.  This is the information that we need to 
assess the utility of the tutoring. 

Or, suppose that we were assessing the impact of a new drug.  If we were 
working with NHST and the test was statistically significant, we would reject 
the null hypothesis.  This tells us only that the impact of the drug is not zero.  
By contrast, if we were working with effect-size estimation we would report 
(for example) that the drug reduces the risk of relapse by 5% or 10% or 20%.  
This is the information that we need to assess the utility of the drug.   
 
10.1.4. Meta-analysis 
 
When we move from primary studies to meta-analysis, the same issues apply.  
There are cases where the intent really is to test the null hypothesis of no 
effect, and in these cases, we should be using NHST.  This would include a 
meta-analysis to assess the impact of homeopathy.  It would also include cases 
where the meta-analysis is being used to gain regulatory approval, and the 
agency requires the use of NHST. 

However, in the vast majority of cases where the goal of the analysis is 
to assess the impact of an intervention, we care about the magnitude of the 
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effect size, rather than a test of the null hypothesis.  The issues are similar to 
those outlined for primary studies, but with some complications. 
 
On the pages that follow, I address the following issues 
 
• When the effect size is consistent across studies, we should almost always 

focus on estimating the mean effect size rather than testing the null 
hypothesis. 

• When the effect size varies across studies, we should focus on estimating 
the mean effect size and additionally on estimating the dispersion in effect 
sizes.  Here, estimating the mean effect size is not sufficient, and focusing 
on a test of the null hypothesis is especially problematic. 
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10.2. When the effect size is consistent across studies 
 
10.2.1. Mistake 

Researchers sometimes focus on the question of whether the analysis allows 
them to reject the null hypothesis of no effect.  In most cases, the test of the 
null hypothesis is of limited relevance and the focus should be on effect-size 
estimation. 
 
10.2.2. Details 

Consider an analysis where the effect size is consistent across studies.  In 
this case, the impact of the intervention is assumed to be essentially the same 
for all comparable populations, and so (for all intents and purposes) we are 
talking about a common effect size.  (Strictly speaking, the effect size is only 
consistent across studies when all studies are estimating the same parameter.  
As a practical matter I am using the word consistent to apply to cases where 
the variance across effect sizes is small enough that the substantive or clinical 
impact of the variation is not important.) 

The issues here are basically the same as those for a primary study.   That 
is, the NHST addresses a question that we do not really care about (Is the 
effect size precisely zero?) while effect-size estimation addresses the question 
that we do care about (What is the magnitude of the effect?) 
 
10.2.3. Example | Tamiflu 
 
A case in point is the systematic review by Jefferson et al. (2014) which 
assessed the utility of Tamiflu for alleviating symptoms due to the flu (Figure 
56).  Patients with the flu were randomly assigned to receive either Tamiflu 
or a placebo, and researchers tracked the number of hours until the patients 
started to feel relief of symptoms.  

The results of the analysis are shown in Figure 56.  The effect size is the 
raw mean difference (in hours).  An effect size of zero would indicate no 
difference between groups.   An effect size to the left of zero would indicate 
that the treated group reported relief (on average) sooner than the control 
group.  An effect size to the right of zero would indicate that the treated group 
reported relief (on average) later than the control group.  The impact of the 
treatment was consistent across studies (the estimate of τ2 is zero), so we can 
talk about a common effect size. 
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Figure 56 | Impact of Tamiflu | Raw mean difference < 0 favors Tamiflu 

   
The difference between groups was statistically significant.  The Z-value 

for a test of the difference is −3.938 with a corresponding p-value of < 0.001.  
So, we can conclude with a high level of certainty that Tamiflu did reduce the 
mean time until people began to feel a relief of symptoms.  

For purposes of obtaining approval from a governmental agency, the p-
value might be the key statistic.  However, from the point of view of a 
researcher or clinician, it would be a mistake to focus on this p-value.  Rather, 
we also need to know the clinical utility of this intervention.  The mean 
difference between groups was 16.759 hours, and the reviewers use this to 
assess the clinical utility of the drug.  They point out that the mean time to 
relief for the control group was about a week, and that a difference of 17 hours 
should be seen in this context.   

For recent developments in the discussion of NHST, see (Amrhein, 
Trafimow, & Greenland, 2019; Sander Greenland, 2019; Trafimow, 2019; R. 
L. Wasserstein & Lazar, 2016; Ronald L. Wasserstein, Schirm, & Lazar, 
2019).  
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Summary 

When the effect size is consistent across studies, the situation in a meta-
analysis is basically the same as it is in a primary study. When the analysis 
concerns the utility of an intervention, the NHST paradigm addresses a 
question that we do not really care about (Is the effect size precisely zero?) 
while effect-size estimation addresses the question that we do care about 
(What is the magnitude of the effect?) 

For decades, people in research had spoken about the controversy between 
NHST and effect-size estimation.  This was the subject of hundreds of 
papers and several books.  Today, there is widespread consensus that we 
should generally focus on effect-size estimation when evaluating the 
impact of an intervention.  While guidelines now recommend (or 
mandate) this shift for most analyses, the transition in primary studies has 
been slow.  In many cases, the discussion section of a paper is still driven 
by the p-value rather than the size of the effect (Rothman, 2010, 2016; 
Stang, Deckert, Poole, & Rothman, 2017; Stang, Poole, & Kuss, 2010; 
VanderWeele, 2010a, 2010b).  

In the case of meta-analysis, the focus on effect-size estimation should be 
more natural, since the meta-analysis is built around the size of the effect.  
Nevertheless, there are still many cases where the researchers revert to a 
focus on the p-value.  We need to avoid what Rozeboom (1960)  called 
this primitive tendency of focusing on a test of the null hypothesis, and 
focus instead on the size of the effect. 
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10.3. When the effect size varies across studies 
 
10.3.1. Mistake 

When the effect size is consistent across studies, the issues in a meta-analysis 
are similar to those in a primary study.  A test of the null hypothesis addresses 
an issue that we do not really care about, while an estimate of the effect size 
addresses the issue that we do care about.  The shift from the former to the 
latter solves the problem.  By contrast, when the effect size varies across 
studies, the situation in a meta-analysis is more complicated. 
 
10.3.2. Details 

Both approaches, null hypothesis significance testing (NHST) and effect-size 
estimation, focus exclusively on the mean effect size.  One asks What is the 
mean effect size? while the other asks Is the mean effect size zero? but they 
both focus on the mean. 

When there is only one effect size, this makes sense.  By contrast, when 
the effect size varies across studies, the mean will be of limited importance.  
In this case, we need to focus also on the dispersion in effects. 
 
10.3.3. The null hypothesis may not apply to any specific population 
 
When we are working with a single primary study, there is only one 
population involved, and it makes sense to test the null hypothesis that the 
effect size in that population is zero.  Similarly, when we are working with a 
fixed-effect analysis we are working with one population, and it makes sense 
to test the null hypothesis that the effect size in that population is zero. 

By contrast, consider what happens when we move to a random-effects 
analysis and the true effect size varies across studies.  If we reject the null 
hypothesis, we know that the mean effect size is not zero, but the mean is not 
representative of the actual effect size in any population.  Consider a case 
where the intervention is helpful in some populations but harmful in others.  
What does it tell us that the mean effect size is (or is not) significantly 
different from zero? 
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10.3.4. The null hypothesis applies to a specific mix of populations  

A second issue is that when the true effect size varies across studies, the mean 
effect size in a meta-analysis will depend on the mix of populations that are 
included in that analysis.  For example, if the effect size tends to be larger in 
studies that employed a higher dose of a drug, the effect size will shift to the 
left if most studies employed a relatively low dose, and will shift to the right 
if most studies employed a relatively high dose. 

In this context, we need to consider what null hypothesis is actually being 
addressed by the test of significance.  The test addresses the null hypothesis 
that the mean effect size in this specific mix of populations (and the universe 
of comparable populations) is zero.  Since the mix of populations is (a) 
somewhat arbitrary, and (b) not well defined, it is not always clear what a test 
of the null hypothesis can tell us.  Put simply, if the mean effect size for this 
mix of populations is not zero, but the mean effect size for an alternate mix 
of populations may be zero, why do we care about this mix and not some 
other? 

 
10.3.5. Example | ADHD 
 
Consider the ADHD example, discussed earlier (Figure 57).  Recall that the 
mean effect size was 0.506 [B], but the effect size varied from as low as 0.05 
in some populations to as high as 0.95 in others [C].  In this case, the mean 
effect size obviously depends on the specific mix of populations included in 
the analysis.  Depending on that mix, the mean could move left or right. 

For example, suppose that the effect size tends to be higher in studies 
that employed a larger dose of the drug.  Suppose further that the 
inclusion/exclusion criteria limit the analysis to studies that employed a dose 
in the range of 30 to 80 mg.  While the inclusion/exclusion criteria may define 
a range of doses, it will not generally specify the proportion of studies with 
each dose.  If the analysis includes primarily studies that employed a dose 
near 30 mg, the mean effect might be 0.30, whereas if the analysis includes 
primarily studies that employed a dose near 80 mg, the mean effect might be 
0.80.  As such, the null hypothesis is being tested for a universe of populations 
that is not well defined, and in any event is of no particular interest. 
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Figure 57 | ADHD Analysis – Forest plot 

 
10.3.6. Example | Clozapine 
 
Or, consider the analysis by (Taylor et al., 2012) which looked at the impact 
of augmenting clozapine with a second antipsychotic (Figure 58).  The effect 
size index is a standardized mean difference, with scores below zero 
indicating an improvement.  The authors report that the mean effect size is 
−0.239, with a 95% confidence interval of −0.452 to −0.026 [B], so on 
average the treatment improves outcome by around one-fourth of a standard 
deviation.  Additionally, they characterize this as a small benefit.  All of this 
is correct, and if the impact of treatment had been consistent across studies, 
these numbers would indeed capture the magnitude of the effect.  (These 
results are for the random-effects model, which was incorrectly labeled in the 
original paper.)  

However, the prediction interval is −0.84 to +0.34 [C], which means that 
there are some populations where the treatment improves response by 0.84 
standard deviations and others where it hurts response by 0.34 standard 
deviations.   
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Figure 58 | Augmenting clozapine | Std mean difference < 0 favors augmentation 

 
Here, the NHST framework is especially problematic.  When the effect 

size varies this much, the mean effect should be of secondary interest.  The 
focus of the report should be that the treatment is very effective in some 
populations, moderately effective in others, and harmful in others.  In this 
situation, it is not clear why we would want to ask if the treatment is helpful 
“on average”, and so the use of NHST is especially difficult to justify. 

 
10.3.7. Example | Juvenile Drug Courts 
 
In some parts of the United States, juveniles who have been charged with 
crimes related to illegal drugs may be tried in criminal court or in drug court.  
The drug court is a separate court where judges have more latitude than the 
judges in criminal courts.  For example, they may be able to sentence the 
defendant to community service rather than prison.  Tanner-Smith, Lipsey, 
and Wilson (2016)  compared the impact of juvenile drug courts vs. standard 
courts for preventing recidivism.  An odds ratio greater than 1.0 indicates that 
the drug courts did better, with juveniles more likely to stay out of trouble. 

The p-value for a test of the null hypothesis is 0.578 [B], so there is no 
evidence that the drug courts are effective on average.  However, it is clear 
from the plot that the effect varies substantially across studies.  As indicated 
by the prediction interval [C], there are some studies where the drug courts 
do better than the controls, some where they do as well as the controls, and 
some where they do worse than the controls.   
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If the treatment is helpful in some cases and harmful in others, the 
question of whether the mean effect size is zero, is largely irrelevant.  Unlike 
in a primary study, simply switching to effect-size estimation is not sufficient 
since this still addresses only the mean.  Rather, the focus must shift to the 
dispersion in effects.  We would report that the drug courts increased the odds 
of recidivism by 77% in some populations, while in others they reduced it by 
73% [C].  In this context, the mean effect size is only a footnote.  

In this example, the authors discussed the heterogeneity in effects, and 
then looked for relationships between the effect size and various risk factors.  
This is the correct approach. 

 

 
Figure 59 | Drug courts vs. standard courts | Odds ratio > 1 favors drug courts 

 
10.3.8. In context 

What distinguishes the Tamiflu analysis in section 10.2.3 (on the one 
hand) from the ADHD analysis, the Clozapine analysis, and the Drug Courts 
analysis (on the other) is the following.  If the effect size is consistent across 
studies, as it was in the Tamiflu analysis, the mean effect size applies to each 
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population. Therefore, it makes sense to focus on the mean effect. By contrast, 
if the effect size varies substantially, as it does in the other analyses, the mean 
is not the effect size in any population (let alone all populations).  Therefore, 
we need to report not only the mean effect size, but also the variation in 
effects.  And, we need to be clear that the mean applies to the specific mix of 
populations included in the analysis, which may not be the same as the 
universe of populations to which we had intended to make an inference. 

All of this applies whether or not the confidence interval for the mean 
effect excludes the null effect size.  In the ADHD analysis we conclude that 
methylphenidate is effective on average, but we still need to address the fact 
that the impact may be trivial in some populations and substantial in others.  
In the clozapine example we conclude that the augmentation is effective on 
average, but we still need to address the fact that the effect varies (and in 
some populations may be harmful).  In the Drug Courts analysis we cannot 
conclude that the courts are effective on average, but we still need to address 
the fact that the impact varies.  If the intervention is effective in some 
populations and harmful in others, the mean is of little relevance. 
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Summary 

When the effect size varies from one population to the next, the mean 
effect size and test of the null hypothesis will depend on the specific mix 
of populations included in the analysis.  Since this mix is somewhat 
arbitrary, it is not always clear why we should care about this specific null 
hypothesis. 

Additionally, when the effect size varies across populations, the effect size 
in any given population may fall some distance from the mean effect size, 
and so the mean (and a test of the null hypothesis that the mean is zero) 
may have very limited utility. 

If we report that the effect is statistically significant, the take-home 
message is that the treatment works.  However, if the treatment is helpful 
in some cases and harmful in others, this is not the message we want to be 
sending.   

Similarly, if we report that the effect is not statistically significant, the 
take-home message is that the treatment may not work.  Again, if the 
treatment is helpful in some cases and harmful in others, this is not the 
message we want to be sending. 

Rather, if the treatment effect varies substantially, we need to shift our 
focus away from the mean effect size and focus on the dispersion in effect 
size.  The test of significance deals only with the mean, and thus puts our 
focus on the wrong issue. 
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10.4. Significant effect may be  harmful in some 
populations 
 
10.4.1. Mistake 
 
Researchers sometimes assume that if a treatment effect is clinically helpful 
and statistically significant, that treatment will be helpful in all populations.  
This is a mistake. 
 
10.4.2. Details 
 
Researchers sometimes ask, “If the treatment is helpful and the effect is 
statistically significant, how is it possible that there are studies where the 
treatment is harmful?” The answer is that the statistical significance refers 
only to the mean effect size.  The treatment is helpful on average, but there 
could be some populations where the treatment is harmful. 

It may be helpful to draw an analogy to a primary study where we assess 
the math score for all students in a class.  We report that the mean score is 50 
with a confidence interval of 40 to 60.  We also report that there are some 
students who score as low as 10.  The fact that the confidence interval is 40 
to 60 speaks only to the mean effect and says nothing about the distribution 
of scores.  We understand that the class mean can be 50, and there may still 
be students who score as low as 10 points (or even lower).  By analogy, the 
mean impact of an intervention across all populations in a meta-analysis may 
be 0.50 with a confidence interval of 0.40 to 0.60.  It is still entirely possible 
that the effect size in any single population could be less than zero.   

While this answer fully addresses the question of how the intervention 
can be harmful in some populations when the mean effect size is positive and 
statistically significant, we need to recognize that the intuition behind the 
question is correct.  People who ask this question are actually having an 
“Aha” moment, and recognizing a key problem with the way that significance 
tests are used. 
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Summary 

The significance test addresses the mean effect size.  If the effect size is 
consistent, the effect in all populations is the same, and so it makes sense 
to focus on the mean.  By contrast, if the effect size varies, the effect in 
each population is unique.  While the treatment may be helpful on 
average, it could be harmful in any given population.  Therefore, when 
the effect size varies across studies, it is imperative that we consider the 
extent and implications of the dispersion. 
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10.5. Putting it all together 
 
In primary studies, tests of statistical significance address the question “Is the 
effect size precisely zero?” whereas effect-size estimation addresses the 
question “What is the effect size?”  While there are some circumstances where 
we need to test the null hypothesis of no effect, in the overwhelming majority 
of cases we are concerned with the second question, and so this is the 
approach that we should be using. 

A meta-analysis where the effect size is consistent across studies is 
similar to the primary study in this regard.  While there are specific 
circumstances where we need to test the null hypothesis of no effect, in the 
overwhelming majority of cases we should focus on estimating the size of the 
effect.  Almost all researchers would agree with this point in the abstract, but 
sometimes revert to the significance test in practice.  In presenting and/or 
discussing the results, it would be helpful to focus consistently on the size of 
the effect and the clinical or substantive implications of that effect. 

When the between-study variance is non-trivial, the situation is more 
complicated.  Here, the mean effect size (and the test of the null) will be 
affected by the specific mix of populations that happen to be included in the 
analysis.  Put bluntly, whether we can reject the null hypothesis may depend 
on the particular mix of populations included in the analysis.  Since this mix 
is somewhat arbitrary, it is not always clear why we would want to estimate 
the mean or test the null hypothesis. 

Additionally, when the effect size varies substantially across 
populations, the effect size in any given populations may fall some distance 
from the mean, and so the mean has limited utility.  Rather, we need to focus 
on the dispersion in effects.   

If we report that the effect is statistically significant, the take-home 
message is that the treatment works.  If the treatment is helpful in some cases 
and harmful in others, this is not the message we want to be sending.  
Similarly, if we report that the effect is not statistically significant, the take-
home message is that the treatment may not work.  Again, if the treatment is 
helpful in some cases and harmful in others, this is not the message we want 
to be sending. Rather, if the treatment effect varies substantially, we need to 
shift our focus away from the mean effect size and focus on the dispersion in 
effect size. 


